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INTERNAL 

As we know, there is a need in modern physics and mechanics for the construction, ana- 
lysis and utilization of new models of bodies with complicated properties. 

Researchers are now in a position to begin the actual development of the macroscopic 

theory which requires investigation not only of gas motion, but also of the motion of 

deformable solids in close interaction with the physico-chemical processes occurring 
within a given particle and those attending its interaction with the neighboring particles 
of the body and with external objects. 

The world literature of recent years contains numerous theoretical papers in which new 

types of generalized forces and equations of state are introduced. Most of these studies 
are based on formal mathematical constructions. 

The construction of new theories is intimately connected with the introduction of new 

concepts as defining and unknown characteristics. It also involves quantities which are 
defined mathematically to describe the properties of space and time, the positions and 

states of substantive body particles and fields. These new concepts and mathematical 
entities make it possible to isolate the defining quantities from the general laws of mo- 

tion and physico-chemical processes. 
To consider these matters more specifically, let us examine the general formulation 

of problems of constructing models to describe broad classes of motions and processes in 
the mechanics of continuous media. 

Let us begin with some examples of basic characteristic quantities. 
Physical investigation of the motion of material continua entails the use of the con- 

cepts of time and of a three- or four-dimensional metric space ; it always requires two 
coordinate systems (see Fig.l)(**), namely the observer’s coordinate system zl, za, ti, 2” 

*) The present paper was delivered at the opening session of the Third All-Union C.on- 
gress on Mechanics (January 25. 1968). 
**) Some authors hold the view that the mechanics of movable continuous material me- 
dia can be constructed by means of a single Cartesian coordinate system without signifi- 
cantly limiting generality. This supposition. which is reflected in certain texts and con- 
veyed to students in all sincerity by their teachers, is incorrect and hinders proper under- 

standing of mechanics and its problems. Confusion is bred, on the one hand, by the fact 
that the mechanics of deformable bodies is usually concerned with linear problems in 
which one can assume the the observer’s system coincides with the comoving system. 
On the other hand, it is encouraged by the fact that the metric of the comoving Lagran- 
gian coordinate system in the theory of liquids and gases is manifested only by way of 
density. At the same time it is often forgotten that even though all substantive charac- 
teristics such a velocity, acceleration, strain rate tensor, etc., are introduced by way of 

803 



804 L. I. sedov 

and the corresponding Lagrangian system &l, p, &’ &* = t. In Newtonian physics we can 

always assume that ti - 6‘ = t and consider absolute time as a scalar variable. The 
coordinates El, ga, &* define the positions of individual particles. In general. both coor- 

dinate systems are curvilinear. 

A length element in a metric ~emannian space is given by 

ds= = gij dxtixt = g;j d@ d@ fi) 

The components of the tensor g[J define the metric and are the basic characteristics 

Fig. 1 

of space and time. 
In Newtonian mechanics and 

the special relativity theory the 
tensor gij is Euclidean, and the 

definitions of its components are 

supplemented by the observer at 
his own discretion solely through 
his choice nf the coordinate sys- 

tem zl, 9, xs, .+. 
In the general theory of rela- 

tivity the tensor gfJ is determined 
from equations expressing physi- 

cal principles. The invariant differential quantities which define the properties of the 

metric tensor gfJ of a four-dimensional Riemannian space can be taken as the first and 

very important example of nonclassical physical unknowns of a new type. 
The basic unknown relationship in the observer’s system which defines the motion of 

the medium is the law of motion represented by the four functions 

ai = ~‘(61, Es, &*, &a) (i = G&3,4) (2) 

In addition to the functions zf (zk) it is convenient to introduce the following deriva- 
tives as defining arguments for various physical functions: 

-ax; 
xj’= aei’ 

VI;, “ii, * * . V~,VKr * * . v,G . * - (p=i, 2, 3, . . .) (3) 

Here the symbol Vk denotes a covariant derivative with respect to ZH ; the first deri- 
vatives y’ can be regarded for fixed values of the subscript i as vector components over 

the index i . These vectors define the components of the velocity vector, the corre- 
sponding rotations, and the components of the strain tensor 

a 
&j = ‘ia (6 .ij - fijl = ‘/x (gpp_ Qpzjq - fij) 

in the comparison of a given position of the body with some imagined “initial position”, 
Here &Jo (El, E2, Es, &*) denote the components of the metric tensor corresponding to 

the “initial position” which is introduced by some convention based on physical consider- 
ations. In the simplest special cases the initial position is introduced as an “unchanging 
solid body” whose three-dimensional spatial part coincides with the given deformable 
body at some “initial” instant (see fl]). 

(continued from the previous page) 

the observer’s coordinate system, the notion of the comoving coordinate system is still 
essentially involved. 
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Together with :zw of motfon (‘2) we must introduce the variable parameters. pA and 

their gradients (covariant derivatives) of various orders (4) 
pL pA (C, P, P, f’), 'V,,Vkl.. . Vkq CL-? . . . (A=%, 2, . . . . N; q= f, 2. 3, . . .) 

For our additional parameters pA we can take: 

the entropy and the concentrations of various components in the mixture ; 
the components of the tensors of residual strains and dislocation density (‘)s$), S,j, 
the components of the electromagnetic potential vector Ai for the electromagne@c 

field tensor, dA, aAj 
Fij= azj &i 

defined in the appropriate inertial coordinate system by the matrix (e.g. see 133) 

11 0 Bs - ISa c& II 

-BS 0 
Fij= E2 

Bl cEa 

-B’ 0 a4 

--eE1 -c& - cE* 0 I 

where E is the velocity of light, Er, E,, Ed are the components of the electric intensity 
vector, and b, @, B* are the components of the magnetic induction vector ; 

the components of the magnetization and polarization tensor .YJtj = l/a (Fit - A& 

where the HU are given by the matrix 

where HI, Hs, Ha are the components of the magnetic intensity vector, and Dz, D,, Da 

are the components of the electric induction vector ; 
the components of the internal mechanical moments of momenta mth, etc. 

The variable parameters pd can be scalars, tensors, or spinors [4. 5 and 61. The pre- 

sence of the variable parameters pA which must be determined (see (4)) in the solution 
of problems means that the model of a con~uo~ medium under consideration has inter- 
nal degrees of freedom. 

A characteristic and important feature of all macroscopic models of deformable media 
and fields is the functional dependence of the unknown quantities for bodies of finite 
dimensions on the defining parameters. For example, for a deformable body of finite 
dimensions, the total internal energy U is always a functional of the functions tt (&k) 

and p* (g&k). 
In many practical cases it is possible to make use of the generalized property of addf- 

tivity of the internal energy and to express the total energy LJ in the form (5) 

U= 
s u (Sij. Xj'c *f * VhV,- - -V+sj', p A , . -. VP,. l .VklpAe S, KB)dm+Uo 
m 

where m is the rest mass, dm a rest mass element of the medium, and I( the local inter- 
nal energy per unit mass (a physically defined function of the indicated arguments only); 

*) The theory of dislocations is presently being developed by refinement and generaliza- 
tion of plasticity theory through the addition of new parameters (e. g. see P]). 
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S is the entropy, and KB. (h = 1,2,...) are known functions of the coordinates &*. (a 

generalization of the specified physical constants). By fundamen~l physical hypothesis, 
the total specific energy u at a given point does not depend on higher-order gradients?) 
not present among the arguments of u (r .and I are fixed numbers). 

In the classical elasticity theory we have the simplest case where 

In the more complex new models (**) of continuo~ media the argument of the spe- 

cific internal energy II also contain the additional physico-chemical characteristics pA 
and gradients of various orders of the quantities xjj’ and pn. 

The presence of such gradients in the expression for the internal energy makes it neces- 
sary to reconsider our concepts concerning the equations of motion and processes, bound- 
ary and initial values, interaction mechanisms, conditions at d&continuities, and many 

other matters. 
The constant 17, specially isolated and emphasized in Formula (5) is enlrely immate- 

rial in classical elasticity theory and is usually set equal to zero. 
In the more general case the constant. Us must be allowed for and cannot be regarded 

as an additive quantiq for the individual parts of the body when the body is@ fact,divi- 
ded into separate parts. 

This is because any separation of a body into parts, any fragmentation, etc., involves 

losses of external energy. 
In the first approximation the nonadditivity of the total internal energy U can be 

allowed for by means of the constant U &. Allowance for the variation of U, with changes 

in the body surface due to cracking, appearance and development of dislocations, and 

destruction is of ~ramount importance. 
For elastic bodies with isolated singularities it is possible to find changes in the con- 

stant U,, for equilibrium processes from the total changes in elastic energy. The produc- 
tion.or elimination of certain defects in the body through the action of internal processes 

or certain external influences requires energy whose sources may be the total internal 
energy of the body and known external energy inputs. In some cases changes in U,, are 

analogous to latent heat of fusion, or to phase-change energy in general. 

It must be noted that further investigation of the strength of materials on a physical 
basis will be closely related to the analysis of changes in U,. The lack of finished theo- 

ries and notable successes in the solution of problems on materials strength criteria can 

be attributed to disregard of the quantity Us. At the same time, advances in the theory 

of cracking of brittle bodies have been due largely to allowance for changes in V,. 
In solutions of certain problems arrived at within the framework of elasticity theory, 

the theoretical stresses in certain small domains can increase without limit without 
noticeable or even local fracture. Because of this, fracture criteria based on theappear- 

ante of theoretical stresses in excess of limiting values in an elastic field are sometimes 

* ) The possibility of having higher-order derivatives among the arguments of prescribed 
functions was already foreseen and predicted by Cauchy when he laid the groudwork of 
elasticity theory. Limiting transitions from a discontinuum to the continuum in statistical 
theories indicate that the arguments of the specific internal energy u can generally 
include derivatives (3) of any order. 
* *) For example, the model of a bubble-containing liquid in 17-j _ 
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inadequate. 

Fracture of various structural components and test specimens is generally a global phe- 
nomenon of the same character as motion instability, impossibility of equilibrium, or 

im~sibili~ of continuous motion. 
Fracture criteria are generally nonlocal in character, Nevertheless, global instability 

is often determined by entirely local conditions. One must bear in mind, however, that 
in many cases the corresponding local conditions may only be necessary. and not suffici- 

ent for loss of stability of equilibrium and for fracture of a given structure, 

The problem of constructing models of continuous media consists in identifying the 
characteristic quantities and constructing a system of functional or differential equations 
and various additional conditions which make it possible to formulate mathematical 

problems of determining the laws of motion zi (gK) and the physico-chemical processes 
defined by the functions i.bA (Et) for specific physical situations. 

The problem of constructing models of continuous media for known classes of real 
objects and real phenomena is one of the basic problems of physics. Solution of this 
problem must be founded on universal and particular basic assumptions, on experimental 

data, and of the correlation of observations and experimental measurements with theore- 

tical concl~ions and computati~s within the limits of accuracy required in practice or 
implied by the meaning of a given problem. 

The present paper contains a description, analysis, and elaboration of the general method 
which makes it possible to obtain complicated closed systems of equations and complica- 

ted supplementary boundary and other conditions for models of media with internal de- 
grees of freedom from the minimum number of physical assumptions. The additional 

boundary and other conditions just mentioned are a means of rendering specific (“concre- 
tizing”) individual models and particular formulations of problems. 

The basic variational equation which we propose to investigate and which constitutes 
the foundation of the present treatise is a simple and natural generalization of the vari- 
ational principle of Lagrange. In many highly important cases it coincides completely 
with the familiar applications and formulations of this principle [8.4,6, 9,l and lo]. 

As we have known for a long time, all of the basic equations of relativity theory, elec- 
trodynamics, analytical mechanics, thermodynamics of equilibrium processes, elasticity 
theory, hydrodynamics, and many other disciplines result from the application of the 

Lagrange variational principle. 
In many modem physical theories this variational principle constitutes a working and 

essentially unique initial investigative apparatus. 

Our analysis will show that the Lagrange variational equation for material continua 
and physical fields can be employed as a basis for all physical models not only of revers- 
ible phenomena, but in cases of irreversible phenomena as well. 

The variational equation has made it possible to unify and synthesize on a common 
basis various phenomenological and statistical methods of the theory of irreversible pro- 

cesses in thermodynamics and mechanics. In particular, it has permitted the interpreta- 
tion and evaluation of the associated law of residual plastic strains in mechanical plasti- 
city theory within the framework of the existing thermodynamics of irreversible processes. 

A new element of the theory which we shall develop will be the use of the variational 
equation for : 

1) describing irreversible phenomena realizable in continuous media ; 
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2) establishing equations of state ; 
3) establishing kinetic equations ; 
4) obtaining initial and boundary conditions ; 
5) obta~~g conditions at strong discont~~ties (“jump”) inside a medium. 

In elaborating the modem theory of complicated macroscopic models of media and 
fields it is important to bear ln mind that even in Newtonian mechanics the description 

of phenomena with significant involvement of internal degrees of freedom on the basis 

of only the principal equation of Newtonian mechanics 

ma=F (6) 
is impossible. 

Eq. (6) is a sufficient basis for developing the analytical mechanics of a system of 
material points, the theory of absolutely solid bodies, adiabatic elasticity theory, and the 

theory of motion of an ideal incompressible fluid, and certain other disciplines. It is 
already inade’quate, however, for considering macroscopic thermal and electromagnetic 
effects. 

Specifically, Eq. (6) cannot serve as a basis for obtaining the macroscopic laws govern- 

ing the growth of plastic strains, for consideration of effects associated with the variation 

of continuously distributed dislocations, for taking account of various processes and effects 
associated with macroscopic theories of electric polarization and magnetization of media, 
and for many other purposes. 

For example, the familiar equation for the moments of momenta for small particles 
or finite bodies does not follow from Eq. (6), but is rather an independent fundamental 

equation derivable from the symmetry of natural laws relative to a rotation group. Eq. 
(6) is, in fact, a consequence of the symmetry of natural laws relative to a translation 

group, 
For an absolutely solid body and for many classical models of continuous media the 

differential equation of the moments of momenta reduces to the condition of symmetry 
of the internal stress tensor or is satisfied automatically when the internal stress tensor 
is introduced as a characteristic to be determined from the general assumptions concem- 

ing the properties of the medium. 
We note that the development of statistical theories for the derivation of macroscopic 

relations on the basis of Eq. (6) on the macroscopic level always involves some additional 
universal and particular a~umptions which do not follow directly from Eq. (6). 

Now let us consider the meat&g of the basic variational equation which can be con- 

sidered as the fundamental point of departure for macroscopic media with internal 

degrees of freedom. 
For simplicity and greater generality we shall carry out our discussion within the 

framework of special relativity theory, assuming that space-time is pseudo-Euclidean. 
Experience and close examination indicate the development of the theory using a 

fog-dime~ional geometrically defined physical space-time and four-dime~ional vec- 
tors and tensors is very convenient, natural, and quite necessary from the physical stand- 
point in certain cases. 

In the observer’s fixed coordinate system we mentally complement the real motions 
and processes described exactly or approximately by means of the piecewise-continuous 

functions a+ (P) , IrA Gkk)t s m (7) 

by some sufficiently broad class of piecewise-cont~uo~ permissible functions (which 
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by hypothesis contains system of functions (‘7)) 

2;;’ (Ek) = z+ (&k) + $a+, P G”) = PA @) -t bA, ZCES-S (F;“)f@ GO 

and, in view of the meaning of the quantities KB (r), assume that 

6X, G?) = 0 

The functions &, FA, 3 are considered at points of some domain of a system of 
events of the four-dimensional volume V, in space-time bounded by the three-dimen- 
sional surface Z,,. The construction to follow involves the assumption that in the class 

of permissible functions the variations 6~4, 6pA and 6s in the volume Vo are continuous 
together with all their derivatives entering into the va~ational equations and that they 

are sufficiently arbitrary, while the variations ik$, 6Vk zfi,..., GVkpA,... etc., can be 
expressed in terms of the functions z* (&k) and pA (Ek) for real phenomena, in terms of 

the variations 6~s and 6pA , and in terms of their derivatives with respect to the coor - 
dinates z? 

The following are important new features of the theory we are developing : 
1) the variations 6%’ are defined as components of a four-dimensional contravari- 

ant vector, and the variations dpA are defined as components of tensors of the same spe- 
cies as pA; 

2) the variations 6~’ and 6~” and their derivatives can be different from zero 
and are to some extent arbitrary on the boundaries 2, of the arbitrary volumes Y, < Y, 

We write the f~damen~l basis equation in the form 

6 f Ad~j-6W*+6W= 0 if)! 
Vb 

where A is the density of the Lagrangian. 

For a material medium we can express A as (*) 

A=-pu(gij, xj’, Vk~j’***~“, Vr~~v*.*, S,K,) (10) 

where P is the scalar density (the ratio of the rest mass to the three-dimensional volume 
in the comoving coordinate system), and u is the internal energy per unit rest mass in 

the comoving coordinate system. In special relativity theory the quantity r1 can be con- 
sidered as a four-dimensional scalar. The first law of thermodynamics says that the 
function updr can be introduced for any infinitely small physical particle. 

Determination of the arguments and the form of the function u is the basic physical 
problem arising in the “concretization” of a model of a continuous medium, Stipulation 
of the internal energy as a function of its arguments aIways involves certain assumptions, 
some of which may appear very natural and self-evident. 

In practice the values of variab’le parameters can often be considered as characteristics 

*) To the variable integral over V,we can add terms allowing for the presence of the 
quantity U,,in Formula (5), which can generally vary due to the development of the bound- 
ary 2, and of the discontinuity surfaces inside V,. Such an additional term is not intro- 
duced in the basic variant of the theory presented below. In the arguments of the for- 
mula for A we have isolated the entropy S from among the parameters pA. The argu- 
ments of the formula for A do not include gradients of the entropy 8. The subsequent 
theory can be extended directly to the case where the entropy is not specially isolated, 
but is rather identified with one of the parameters pA entering into A together with its 
gradients of any order. 
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of small perturbations. For this reason the function u can be considered simply as a 
positive-definite form of the defining small variable parameters. In this case the prob- 
lem of determining the function u reduces to the problem of determining the constant 
coefficients of the corresponding quadratic form. Determination of these coefficients is 

made easier by symmetry conditions [ll and 121, and can be based on experimental 

data. In certain cases the values of these coefficients can be related to molecular con- 

stants on the basis of a statistical theory (developed with its universal assumptions and 
assumptions specific to the given model). Such coefficients are similar to Young’s 

modulus and to the Poisson coefficient which, in practice, can always be readily found 

by experiment. They can be computed statistically (on the basis of certain far-reaching 
assumptions). However, in the case of certain solids the statistical values do not agree 

in general with-those obtained experimentally. Agreement between theory and experi- 

ment is better for gases, but here too experimental verification of theoretical results is 
necessary. Nevertheless, statistical theories provide a means of gaining insight into cer- 
tain relations between such coefficients which are not clear from phenomenological 
theories, i.e. into the relationship among the coefficients of heat conduction, viscosity, 

and diffusion. 
In an internal coordinate system in Newtonian mechanics Formula (10) can generally 

be replaced by Formula 
A = p (‘/*I? - u) 

where v is the velocity of the points of the continuous medium and u is a three-dimen- 
sional scalar equal to the internal energy. 

In the theories already developed the function A can be considered known both for 

models of material media already defined and for the electromagnetic field. In the 
general theory of relativity the additive component of the quantity A associated with 
gravity is known and serves as a basis for determining the metric tensor gil representing 

the gravitational field. The various generalizations of general relativity theory, gene- 
rally speaking, always involve a change in, or some other specification of, the density 
of the Lagrangian A. 

It is important to note that from the physical standpoint we can say that a physical 
system has been specified or is known only if the internal energy or, respectively, the 

Lagrangian A , has been specified or determined [l. 10 and 13 - 151. 
Thus, the requirement of specifying the Lagrangian A as a function of macroscopic 

variables in Eq. (9) is a natural one from the physical standpoint. In satisfying this 
requirement we can draw on the immense body of experience accumulated in the vari- 
ous branches of physics and in various experiments. The assumptions made in specify- 
ing the function A are always necessary and can be justified by various intuitive and 
other, generally simpler, assumptions. 

In discussing the problem of specifying the function A one can and must establish the 
most intimate possible contact between macroscopic theory, universal physical principles, 
experiment, and statistical theories. 

Now let us examine the expression for the specified functional 61P* characterizing the 
external volume interactions (in V, ) and surface interactions (on X,.) of a given portion 
of the medium in V, with external fields and bodies, and for certain irreversible actions 
of neighboring parts of the medium adjacent to the isolated volume I’, along the SUP 

face Z,. 
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For adiabatic reversible processes in the absence of external energy influxes inside 
V, and on the surface 2, it is often possible to assume simply that 

SIP = 0 

In conservative systems of celestial mechanics we can always assume that 011” - 1). 
In the general case of phenomenological theories where there are volume and surface 

energy influxes external to the medium under consideration and where irreversible pro- 

cesses operating with the result that the arguments of A include derivatives of various 
orders of zt @) and pA (.E@) with respect to gk or zi , we can write 

ral expression for siti* : &w+ = \ 
. &06S~-- Q&id - rW,SpA) rlr - 

- ,6 (pz, Qi ‘j’** ” ajar * . Vj, 61’ + 2 ~lf~““~‘~‘~ Vj, 
Q=O 

Here S+ denotes the two sides of the three-dimensional surface s 

the following gene- 

(11) 

w -vjq6"^) n&6 

inside. V, at which 

the characteristics of motion can experience strong dlscontinuities ; nk are the compo- 

nents of the unit vector of the exterior normal to &and S+or S,. The components 

are some prescribed external generalized “forces”. The quantity e plays the role of the 

absolute temperature, and can be regarded either as an unknown or as a prescribed quan- 
tity, depending on the circumstances. The entropy variation &S in Formula (11) was 

introduced as a quantity independent of the variations 62 and 5@. 

Specification of the ~ctional6V involves the problem of d~cr~m~ating between 
internal and external interactions. For example, if the electromagnetic or gravitational 
field is considered as an external object, then the corresponding energy influxes for the 

electromagnetic ponderomotive forces and gravitational forces are present in the expres- 
sion for 6IV* ; on the other hand, if these fields are included in the model of the medium, 0 
then the corresponding total differentials are separable from bW* and must be included 
in the expression for A. Upon transfer of the total differentials from 6LY* into 1 Adz the 

meaning of A changes, and Formula (10) can be replaced by another similar one which 
contains free energy or enthalpy instead of the Internal energy, and which may contain 
other thermodynamic functions of state. With irreversible processes transfer of the com- 

plete term ~Iv* Into A Is impossible,since the variation 6#* is generally nonholonomic. 
Definition of the components of the generalized mass and surface forces Q and M is 

a problem closely related to the theory of dissipative mechanisms. Solution of this prob- 
lem necessarily entails various assumptions and contacts with the existing thermodyna- 
mics of irreversible phenomena. Detetermination of Q and M is analogous to the basic 
physical problem of Newtonian mechanics on the determination of laws for forces defined 
by Newton’s equation. and in our case by variational equation (9). Consideration of the 
properties of the quantities appearing in the integrand of the expression for 61Y* at the 
discontinuity surface S, can have special physical significance. Determination of 6k~+ 
involves choosing the defining parameters zi and ~~ , determining their variations, and 
considering the property of continuity of the variations at discontinuities. 

It is important to note that the determination or specification of the quantities A and 
6W* serves to delineate common bases for the most varied models. This makes possible 
the use aAd synthesis of experience in various disciplines and the establishment of direct 
cosrelations betweetl different theories. Moreover, additional means of using statistical 
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considerations arise. 
Dissipative processes must and can be conveniently allowed for hy means of the entro- 

py productiorr equation in the laws of real motions and processes. The equation descri- 

bing the variation of particle entropy is derived below from the Enler eqnations in gene-- 
ral variational problem (9). The positiveness of entropy growth due to irreversible inter- 
nal processes must be ensured by the laws de&&g. A. and the generalized forces Q and 
M for real phenomena. 

In accordance with the basic meaning of Eq. (9) we assume that the quantity 6W is a 
surface integral over C, -i_ Sf. For variations 6r*, 6pA and their derivatives not equal 
to zero on z+Sft 
and BW*. 

the variation dW can be determined from Eq. (9) in terms of 6 s hdr 

If the quantity SIY is defined on X, -I- SC not only by Eq, (9) (for arbitrary (5 c’, 6+t* 
and their respective derivatives), but also by external conditions, then, as we shall show 

below, this yields initial conditions, boundary conditions, and conditions at the disconti- 

nuity. 
With the variations St’ and 6~” and their derivatives of proper order equal to zero on 

za -I- S* but arbitrary (linearly independent) inside V,,Eq. (9) yields the Euler equa- 

6A dA 
6s - -J-$-=--pe, 

&A 
dUA 

=M, (13) 

Here 6A/Gtqn, &L&A and &U&S denote variational derivatives, e, g. 

6A aa dh an 
gzpp- - - vk SP + vkvs vscfkxQP ---.I ’ l 8TQP 

Multiplying Eq, (12) by .Fl” and summing over the index i , we obtain 

pf&=Q, 
W 

-bVP 
where 

(14) 

(15) 

Since 

by virtue of Eq. 

Eq. (15) is the equation for entropy production in a particle, since, by hypothesis, the 
coordinate P plays the role of time. To obtain the derivatives with respect to proper 

time dr = (ga*)“‘d5* we need merely multiply both sides of relation (15) by (&-‘l*. 
The Euler equations contain the impulse and energy equations. Depending on the 

meaning of the parameters uA , the Euler equations also contain the Maxwell equations, 

chemical kinetics equations, and various other forms of equations for the required para- 
meters pA characterizing the internal degrees of freedom. It can be shown j?] that all 

l ) These equations were obtained by equating the coefficients of ar* = ?I&, $i” and 

6s in the volume integral to zero, taking account of Eqs. 

8h = aA + &i+viA, 6~~ - apA + 6x”VtpA, &d% = V,&c’dr 
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existing macroscopic models of continuous media, including models of plastic media, 
can be obtained from basis equation (9). 

The Euler equations are generally partial differential equations whose order is related 
to the order of the derivatives entering into the arguments of the Lagrangian A. In the 
general case this order can be fairly high. 

If Ada- and 8W are four-dimensional scalars defined by Formulas (10) and (11). then 

after variation of the first integral and appropriate integration by parts, basic Eq. (9) 
yields Formula 

6W-= 

+ 2 (N~****P + MyBa*jq) Vj, . . . Vjqsl~A 
PO 

] 

Here ,:; jt...j, and 

nkda+ &V~Qak~&~ 

Ni*d P are certain quantities (tensor components) expressible in 

terms of A and derivatives of 2% and fiA. These quantities result upon transformation of 
the variation 

6 1 Ad% 

V4 
by integration by parts. These transformation do not yield ~ambiguo~ definitions of 
the components P*kj****j~ and NY***& . This is because of the possibility of adding the 

final integral to the left side of (16). This integral is equal to zero when SW is an arbi- 

trary antisymmetric tensor with discontinuous components having continuous first- and 
second-order derivatives at the points of the volume bounded by the surface 2, + Se 

This statement is a self-evident consequence of the Gags-Ostro~adskii theorem, since 
Eq. q*fi L= -We implies that V8Vkf&k = 9. 

Any linear forms of the same character as those in the first terms of the integrand in 
Formula (16) can be taken as the components of SW. It is clear that the formulas which 

yield expressions for the tensor components 

pi.+ + @dp, NF...$p + j@h..ip 

in terms of parameters characterizing the motion and state of the particles are not uni- 

quely defined because of the arbitrary choice of Wk. 

This gives rise to the question of the ambiguity of the notion of the energy-momentum 
tensor, as well as to the question of arbitrariness for specified Euler equations, for equa- 
tions of state in general, and for the fundamental notion of internal stresses in -parti- 

cular. 
The dependence of the indicated tensor components in Formula (16) on the defining 

parameters can be regarded and interpreted as the equations of state of the physical 
medium. These equations constitute a generalization of Hooke’s law. 

Thus, arbitrariness in defining the equations of state arises for a specified system of 
Euler equations. More detailed analysis shows that additional boundary and initial con- 
ditions at the strong discontinuities which express physical interactions at the boundary 
of the body or at discontinuities inside the body do not constitute a basis for eliminating 
the above ambiguity of the equations of state. 

For a specified system of Euler equations it is possible to alter the density of the Lagran- 
gian A by adding a divergent term. It is clear that this implies a change in the equatfons 

of state. However, complete specification of the Lagrangian can be incorporated into the 
physical definition of a model of a continuous medium. Specification of the system of 
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Euler equations does not provide the complete and necessary information about a specific 

model of a medium. 
The stresses are, of course, defined unambiguously once the equations of state have 

been established. But the whole significance of the ambiguity under discussion has to do 
with the fact that all the laws of motions and laws of variation of the parameters pA in 
specific problems remain valid for certain other forms of the equations of state. 

We emphasize that the ambiguity under discussion is not related to the specifics of 

the method used to establish the equations of state using variational principle (9). The 
same situation arises in using the general heat influx equation of thermodynamics in 
differential form [14]. 

The significance of the ambiguity can be undestood and explained on the basis of the 
following physical considerations. 

It is a well know fact that the problem of internal stresses in an absolutely rigid body 
in motion has no definite solution. It is always possible to imagine any system of inter- 
nal forces equivalent to zero in such a body without being able to detect its presence or 
absence. The equations of motion and additional conditions for various systems of inter- 
nal stresses are equal, while their equations of state differ. 

It is clear that this ambiguity does not arise when the equations of state are prescribed. 
However, in the construction of new models, i.e. when the system of equations of state is 

being established, the possibility of choosing different equations of state arises by the 
nature of the problem. This can assume considerable importance when the density of the 

Lagrangian depends on the sequence of gradients defining characteristics. 
In order to illustrate the validity of this statement, let us consider the equations of 

elasticity theory for which the equations of state are given by Formulas 
pii = 

Fdaulaei j) 07) 

Instead of equation of state (17) we choose other equations of state of the form 

P*ij = $j + ‘7p’i, 7j = v8V,;NikJj (Niksj = _ Nikjs) 
(18) 

where the quantities Nixsf are, as indicated, antisymmetric in s and j, i.e. they con- 

stitute components of a tensor which in all problems depends in the same but arbitrarily 
specified way on any of the parametets of state and any of their derivatives (*). 

It is clear that all the laws of motion and straining will be defined independently of 
>G since the additional stresses p’j identically satisfy the equations of equilibrium 

vj$G = 9 

and since, moreover, for the volume V bounded by a finitely closed surface X- we have 

s ’ vi pijsxidt = { ( lpijsxi + VkNika’djv&Zi).nj do = s . . 
V, (VkN'""6't) n#Q = O 

V i: 2: 

where the normal components of the gradient V, which appears in the integrand of the 
surface integral vanish identically at each point of the surface2 . This implies that the 
additional stresses’? do not contribute to the energy influxes of the interactions (with 

*) In elasticity theory problems of equilibrium in the absence of external body forces the 
solutions of the stress problems can also be represented in the form (18). If Hooke’s law 
or some other specific equation of state applies, however, the quantities NiKLj .are func- 
tions of the coordinates and not universal functions (the same for all problems) of the 
strain characteristics. 
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arbitrary possible displacements 6ti) between neighboring particles of any surface 2 , 
and therefore With external bodies at the boundary&of the body. 

Variational equation (9) affords deeper insight into the concepts of equations of state, 
boundary and initial conditions, and conditions at strong discontinuities which do not 
follow from the differential equations without additional assumptions. It turns out that 
all of the conditions and equations just listed are interrelated and must be considered as 
a unified whole. 

The conclusions to follow are related to a transformation of Formula (16) for SW such 

that the integrand contains only the variations bz’ and $L” and the covariant derivatives 

along the normal V,(‘%$ and Vn@)GpA independent on Z + Sk. Here a, fi =i,2,... 
The fact is that the variations 6zi and V$z’ and not all of the higher-order gradients 

V~,...,t75p6zf on I: + Sk can be considered independent. 

In the simplest particular cases the appropriate transformations of Formula (16) for 
obtaining boundary conditions were carried out by Mindlin (*) [17]. The appropriate 
particular transformations for obtaining the conditions at discontinuities were developed 

by Lur’e fl8$ 
Let us assume that the surface Z, + S* is smooth. A sufficient condition for this is 

that the surface S be smooth (since the volume V, and the chosen surface Z, are arbitra- 

ry), The above transformations yield Formula 

(I!)) 

In Formula (19) the components of the vectors 3$,,, Sb/r,..., sDi(r_ll and the components 

of the tensors J!!Aor...,&IA(n_,l are defined uniquely and ire expressed in terms of 
p.I&...,jv + Qik~8~~~~~~v and @#t+--d~ + M, 

I 
*h*-J’ which are not uniquely defined. 

An important property of the vectors 9 (r and tensors JIAe defined at points of elements 

da on the boundary surface Cs + Sf is their dependence not only on the orientation of 
these elements as in the case of ordinary stresses, but also on the curvature of these ele- 
ments and other, more suitable, differential-geometric properties of the elements in 

question ( l * ). 

*) Zhelnorovich carried out the general transformation in four-dimensional space-time 
for any finite order of the variation gradients. 
**) Conversion from Formula (16) to Formula (19) is easily effected in the absence of 
edges or conic points on Z + Sk in the presence of such singularities Formula (19) 

remains valid, but the value of the integral in (19) must be considered as a limit along 

the smooth surface I: + S* which tends to a surface with edges. Because the integrand 
of (19) (which depends on the vector n and its tangential derivatives) has singularities 
and discontinuities, taking the limit to a three-dimensional surface Z + S + with two- 
dimensional edges gives rise to additional integrals taken over the two-dimensional 
surface with edges. These integrals can be written out by applying integral (16) (which 
has no singularities) directly to the surface with ribs. It is then necessary to convert to 

Formula (19) ; in this transformation the second integral of the divergent term, which 
vanishes for a smooth surface 2: + S+, yields a readily computable nonzero integral 
over the edges in the case of a surface with edges. 
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The true characteristics of a continuous medium are precisely the vectors 9, and the 
tensors A,7 which depend on the geometric singularities of the areas on which interaction 
occurs, and on the defining parameters by way of the Lagrangian A and Qikll****jv and 
My...$j v which enter into the expression for 6W*.It is clear that the only combinations 

which matter in Formula (11) for8Vare those consisting of the Qtkjl**SSViv and Mp***‘J~, 
which enter into the definitions for Sia and -/lAP. 

If the quantity i3W is specified on a portion of the boundary Zs then Formula (19). the 
arbitrariness of 8x1, CA ,and the normal gradients of Zs imply the following conditions 
at the points A of the portion of Zs under consideration 

ai, = riol (A), JCU= gAa (A) (29) 

(i = 1,2,3,4; A - 4,2,...,N; a = 0 12 , # ,**.t r - 1; fl - 0,1,2 )..., 8 - 1) 

where li, (A) and gAp ( ) A are, in general, given functions at the points A. 

On the three-dimensional spatial portion of the boundary 2, corresponding to tO=const 
Eqs. (20) represent the initial conditions in the three-dimensional volume occupied by 
the body. 

On the three-dimensional portion of 2 formed by the two-dimensional boundary Z, 
of the body and by the simultaneously varying time t,conditions (20) can be considered 
as boundary conditions at the boundaries of the variable three-dimensional volume occu- 
pied by the given body, Eqs. (20) on the instantaneous boundary 1 = const > to can gene- 

rally be considered simply as relations defining the right sides on the basis of the laws 
of motion isolated by means of the initial and boundary conditions. 

Now let us write the conditions of the three-dimensional strong-discontinuity surface 
,S situated inside the four-dimensional volume l’( of the continuous medium. We assume 

that on the basis of preliminary studies and appropriate hypotheses all of the external 
influences on the medium which are distributed over S are included in 6W* (for exam- 

ple, the variation of the “additive” constant u ,,, and specifically heat release during 
chemical reactions at the combustion or detonation front, or else energy absorption at 
various types of discontinuities along S can sometimes be considered as external influ- 
ences ; the same effects can be interpreted as internal processes due to the complication 
and variation of the density of the Lagrangian A, especially by isolating the variation 

of the corresponding additional surface integral-over the discontinuity surface S). 
Assuming that the variations 6$ and 6~~ and all of their derivatives entering into 6W 

are equal to zero on 2, at the discontinuity surface S, we obtain 

0=6W= 
S 

[(3Jio6zi)+ + (8,6x’)_ + . - . + ~B,(,,)v~-‘)~~i)+ + 
s 

+ (ai(r-l) v(“‘)6x*)_ + (Jlr,$~A,+ d- (.‘&,&A,- + : * * + (-&s-l) v~*1’6rA)+ + 73 

+ wi(r-1) vn (%pA)]_& WI 

We assume the same direction of the normal in all quantities in Formula (21) which 
depend on the direction of the normal to ,S . 

From the definitions of Pi, and .&!A@ and of the operator Vnk we have 

$i, (n) = T sDi, (- a)* AAfj (n) = J dl,, (- n), v, P-l = F o;_-) (22) 

where the minus sign corresponds to even, and the plus sign to odd, a, p and k. 

As we have already noted, the basic condition of the class of permissible functions 
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consists in the assumption that the required solution and functions under comparison in 
the volume V, are piecewise-continuous, together with all their partial derivatives pte- 
sent in basic variational Eq. (9). The basic significance of introducing the strong-dis- 
continuity surface Sinside the volume V, lies in the fact that the required solutions and 
the appropriately varied permissible functions experience discontinuities in the mental 

intersection of the surface S (*). These discontinuities can be of various types : their 
character can depend, for example, both on the order and the form of the functions which 

experience discontinuities on S. or of their derivatives. For example, we can consider 
strong discontinuities of the crack type in which the required functions together with all 

of their partial derivatives are discontinuous, or discontinuities of the dislocation type in 
which the small displacements normal to the surface S are continuous, while the deriva- 
tives in the plane tangent to S are discontinuous in passing from one side S+ to the other 

side S_ , or discontinuities of the shock-wave type encountered in classical gas dynamics, 
when all of the coordinates a? (all of the displacements) on S are continuous, while the 

derivatives WdEj can experience discontinuities. 

When higher-order derivatives ak2 
aQL. . . a<j,. 

are present among the arguments of the function A, the number of possible types of 
strong discontinuities can become quite large. 

Two distinct cases are possible in the formulation and solution of specific problems in 
gas dynamics and in the simple theories of the mechanics of solids: either the type of 
surface discontinuity is specified, or the type of discontinuity is determined in the course 
of solution. 

Because of this, in using variational equations one is still obliged to introduce or deter- 
mine classes of functions which must include the required solution (* l ). In particular, if 

we assume that the class of permissible functions is defined by the following conditions 
at points of the surface S: 

(WW + = (VnW_ (i=i,Z, 3.4; a=O, 1,. ..,rr-i; r,\<r) (23) 

where (Van6zi)+, (V’nGt*)_ are arbitrary and independent for a = rl, rr + i,...r - 1 

(V,QPA)+ = (V @WA) la - (A= 1, 2, . . . ,N, j3=0, I,..., sl--l, sl<s) 

while (V,b 6pA)+, (Vi6pA)_ are arbitrary and independent for B - S], . . . 8 - I, this 
defines on passage through the surface S the class of permissible functions J(El, El, ~3, Ed) 
continuous together with their rl - 1 partial derivatives and the functions JA~(J+, ~2, 2, 
ti) continuous with their sl- 1 partial derivatives, where the higher-order derivatives of 
these functions which are normal to S can have an arbitrary discontinuity. In addition 
to conditions (23) we assume here that all the quantities appearing in Eq. (9) are conti- 
nuous on each side of the surface S in moving along the surface S. From the arbitrarir 
ness and independence of the quantities V,, a&J andV& i$“on the basis of (22) and 

(23), we obtain from (21) the following conditions at the discontinuity surface : 

*) In general, the magnitudes of the discontinuities of the unknown functions are also 
unknown. However, there are problems in which some of the discontinuities of the un- 
knowns are specified in additional conditions. 
**) Such assumptions are analogous to the very general assumptions about the continuity 
and differentiabiliry of various functions in the mechanics of continuous media. 
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tgoio)+ = (si,Ls w&J+ = (.&g)_ 
for a = O,i,...rl - 1, p = 0,l . ..sr - i 

(si,)+ ~ (sDi,)- = O, (+a)+ = (J&J)_ = 6 (24) 

for a = rl, rl+ l,...r - 1, B = II, s1 + i,...s - i 

Conditions (24) can be considered as conditions of continuity (conservation of passage 
of the world lines of the particles through the discontinuity surface S ) of the quantities 
.Fi. and ./I,, at the discontinuity surface S. This property of the quantities pi, and 
1, constitutes one of their important physical characteristics. 

In the mOre detailed solution of the problems with discontinuous solutions,and especially 
of problems which involve varying discontinuity surface s (as. for example, with the pro- 
pagation of isolated dislocations over the particles within the medium, with the growth 

of cracks, and in other cases) it is possible to generalize basic variational equation (9) 
and to introduce additional vatiadon of the surface s or its edges in the Lagrangian 
coordinates .e. 

Thus, in order to obtain additional relations corresponding to such complicated discon? 

tinuity phenomena in real bodies it is generally necessary to complicate the variable 
functions in basic variational equation (9) by introducing addidonal terms in 6W* or 

6Jhdr containing the corresponding variations of the Lagrangian coordinates. This is 
due to the necessity of allowing for the special energy effects associated with the for- 

mation or possible propagation of various types of discondnuides over the particles of 
the medium. These problems will be considered in detail in another paper. 
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STATIC FORMATIONS IN THE GENERAL THEORY 

OF RELATIVITY AND PLANCKEONS 
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Static homogeneous formations in general relativity theory are considered. It is shown 
that two types of formations exhaust the possible collection of such formations. The data 
obtained are to present the planckeon hypothesis of elementary particle structure. 

The canonical form of general relativity theory, also known as canonical gravidynar 
mics, variants of which have recently been developed by several authors [l - 31, permits 
correct formulation of the general covariant definition of the intrinsic energy of an iso- 

lated object, provided the distortion of space-time for which it is responsible, is local, 
This condition is fulfilled with a high degree of accuracy by elementary particles. It 
turns out that the intrinsic energy of elementary particles in a gravitational field is finite, 
and that the domain of definition of an elementary particle must contain a gravitation- 
ally self-compensated domain of dimensions L _ IO-* cm (or,,from dimensionality con- 
siderations, 10-3:’ cm). The energy included in this domain is on the order of 10zu eV 
(10+ g). The gravitational self-compensation condition implies that the dimensions I, 
of this domain must equal its gravitational radius rfi 


